The Response of Photosynthesis to 10 years of Free Air CO_2 Enrichment (FACE) in Lolium perenne

Lisa Ainsworth
Department of Crop Sciences
University of Illinois, Urbana-Champaign

Photosynthesis and **A**tmospheric

Change Laboratory

Rising [CO₂] and Grasslands

- Atmospheric $[CO_2]$ is rising at ~ 1.5 ppm per year.
- Grasslands cover ~ 20% of the world's land surface and contain >10% of global C stocks.
- The role of grasslands is important in the global C budget because of their high capacity to sequester C.

Houghton et al. 2001 Climate Change 2001.

Global Carbon Cycle

Photosynthesis: The Key Physiological Process

http://www.fao.org/ag/AGP/AGPC/doc/Gallery/pictures/trirep.htm

• Photosynthesis is a key process by which plants sense and respond to rising [CO₂].

Effects of Elevated [CO₂] on C₃ Plants

Leaf level responses

- 30 40% increase in photosynthesis (*A*)
- 20 25% decrease in stomatal conductance (g_s)
- 14% decrease in A measured at ambient [CO₂] (360 ppm)
- 15% decrease in Rubisco concentration
- 20% decrease in leaf N
- 40% increase in leaf [CH₂O]

Whole plant level responses

- 40% increase in shoot biomass
- 40% increase in root biomass
- 15% increase in leaf area
- 15% increase in tiller number
- 44% increase in total plant biomass

Wand et al. 1999 Global Change Biol, **5**, 723-741.

Drake et al. 1997 Ann Rev Plant Phys & Plant Mol Biol, 48, 607-637.

Swiss (ETH) FACE Experiment

http://www.fb.ipw.agrl.ethz.ch/FACE.html

FACE: Free Air gas Concentration Enrichment

Experimental Design

Primary Objective

• Characterize the photosynthetic response of *Lolium perenne* to elevated [CO₂].

Hypotheses and Predictions

- Photosynthetic acclimation does not inevitably reduce carbon uptake at elevated $[CO_2]$.
- Acclimation of photosynthesis will be more pronounced under N limiting conditions.
- If increased acclimation of photosynthesis to elevated [CO₂] under low N results because sink development is limited by N supply, then in *L. perenne*, cutting should alleviate acclimation.

Acclimation of Photosynthesis to Elevated [CO₂]

- In elevated $[CO_2]$ A_{growth} increases 43%, but A_{360} decreases 14%. (Drake *et al.* 1997. Ann. Rev. Plant Phys. Mol. Bio. 48: 609.)
- Decrease in photosynthetic capacity is *acclimation*.

Lolium perenne in intensive cutting regime

Primary Objective

• Characterize the photosynthetic responses of *Lolium perenne* to elevated $[CO_2]$.

• Take photosynthetic measurements at the Swiss FACE site: Fall 2000, Spring 2001 and 2002.

• Assimilate and review all of the photosynthetic data from the past 10 years of the experiment.

L. perenne Diurnal Photosynthetic Measurements

- Photosynthesis was measured from dawn to dusk at approximately 2 to 3 hour intervals.
- Measurements were taken at the growth $[CO_2]$, and at the temperature, VPD, and Q incident at that point in time.
- Measurements were taken with portable, infra-red gas analysis systems (CIRAS 1, PP Systems, Hitchin, UK or LI-6400, LICOR, Lincoln, NE).
- Measurements were taken on intact vegetation, on the mid-section of the youngest, fully expanded laminae.

Photosynthesis *in situ*

CLN: Control, Low N FLN: FACE, Low N CHN: Control, High N FHN: FACE, High N

A/c_i Response Measurements

- Leaf CO₂ assimilation rate (A) was determined in response to changes in intercellular CO₂ concentration (c_i) with a portable, steady-state gasexchange system.
- Photosynthetic parameters $V_{\rm c,max}$ (maximum carboxylation velocity of Rubisco) and J_{max} (maximum electron transport) were fit using the Farquhar et al. (1980) photosynthesis model.

Farquhar *et al.*1980 *Planta* **149**, 78-90

A/c_i Response Measurements

Meta-Analysis

- The daily integral of carbon fixation (A); stomatal conductance (g_s) measured at midday in the field; light-saturated net CO_2 assimilation rate (A_{sat}); maximum RuBP-saturated rate of carboxylation ($V_{c,max}$); and light-saturated potential rate of electron transport (J_{max}) were quantitatively reviewed.
- The response ratio (r = Xe/Xa) was used as the metric, and means were weighted according to the statistical precision of the individual experiment (Curtis and Wang, 1998).
- Categorical Variables and Levels

Year: 1993-1995; 1996-1997; 2000-2001

Month: March-May; June-Aug; Sep-Nov

N: High; Low

Cutting Regime: 4, 5, 6, 8

Days After Cut: 1-20; 21+

Daily Integrated Carbon Fixation

Daily Integrated Carbon Fixation (A')

Stomatal Conductance (g_s)

Light Saturated Photosynthetic Rate (A_{sat})

Maximum Rubisco Carboxylation Rate ($V_{c,max}$)

Results Summary

Overall Effects of Growth at Elevated [CO₂]:

- 36% stimulation in daily integrated carbon assimilation (A)
- 31% reduction in stomatal conductance
- 43% stimulation in light saturated CO_2 uptake (A_{sat})
- 18% reduction in maximum carboxylation rate ($V_{
 m c,max}$)
- 9% reduction in maximum electron transport (J_{max})

Results Summary

Low N Fertilization Treatment:

• More pronounced acclimation of photosynthesis (significantly greater reduction in $\emph{V}_{\mathrm{c,max}}$)

Interaction of Days After Cut:

- Decreased stimulation in net C assimilation under Low N conditions
- ullet Greater reduction in $V_{
 m c,max}$ with increasing time after a cut

Carbon Sink Limitation

A. Summer 1994; B. Summer 1995

C: Control; E: Elevated

Rogers *et al.* 1998 *Plant Physiol*, **118**, 683-689

9 DAD: 25 June 1997 23 DAD: 9 July 1997

Isopp et al. 2000 Plant, Cell & Environ, **23**, 597-607

Photosynthesis *in situ*

CLN: Control, Low N FLN: FACE, Low N CHN: Control, High N FHN: FACE, High N

Diurnal Carbohydrate Levels, April 28, 2001

CLN: Control, Low N FLN: FACE, Low N CHN: Control, High N FHN: FACE, High N

Diurnal Photosynthesis and Carbohydrate Fluxes

	-	
I	1	
I	1	
I	1	
I	1	
1		
I	1	
I	1	
I		

Conclusions

- Elevated [CO₂] stimulated photosynthesis throughout the duration of the experiment.
- •Acclimation of photosynthesis to elevated [CO₂] occurred in both High N and Low N fertilization treatments.
- Acclimation was more pronounced under Low N.
- •Under Low N conditions, a high accumulation of carbohydrates in leaves was evident late in regrowth when percent stimulation of photosynthesis and $V_{\rm c,max}$ were significantly reduced.
- These results suggest that a severe carbon source-sink imbalance occurs late in regrowth; limitation of sink development has a negative feedback affect on photosynthesis.

Acknowledgements

Advisor: Steve Long

DOE Mentors: George Hendrey & Alistair Rogers

ETHZ: Urs Aeschlimann, Herbert Blum, Joseph Nösberger, Manuel Schneider, Daniel Suter

University of Essex: Jon Anderson, Jon Bryant, Rebecca Creasey, Phil Davey, Paul Humphries, Graham Hymus, Colin Osborne, Jon Williams

Funding: Graduate Research for the Environment, Global Change Education Program, DOE

